Abstract:In order to solve the problem of poor flexibility and low precision in the indoor localization of mobile robot, a high precision mobile robot indoor positioning system based on Ultra Wideband(UWB) is designed. The system consists of UWB module for wireless sensor networks, including of a UWB radio frequency module, with base station(Anchor) and the tag mounted on the top of the mobile robot(Tag). The system uses the technology of Asymmetric Double Sided Two-Way Range(ADS-TWR) to obtain the distance information between label and each base station, without needing the clock synchronization between base station and Tag. The distance information is transmitted from the base station to the PC through WiFi, and then located after being optimized by using the Kalman filter algorithm. The test results show that the system has the characteristics of simple layout, high precision and high real-time performance. The average positioning error of Static position is less than 13 cm and dynamic position error is less than 20 cm.
Abstract:Grasping points for industrial robot of the existing production lines are fixed and the artifacts only can be placed with a fixed posture and in a fixed position. The complex industrial production requirements are hard to be satisfied with this assembly model and it is inefficient. The SCARA automatic assembly system based on vision guided is designed to improve the original system. The machine vision system is designed to realize the function of rapid identification, location and attitude determination of the artifacts. The assembly system is designed to achieve the function of precision grasping and placement of the artifacts. The image processing algorithm is actualized by the MFC program of Visual Studio and the coordinate and attitude data are sent to SCARA. The good stability and rapidity of this system are proved by the experiment results. The production requirements can be satisfied and the productivity is improved significantly by this system.
Abstract:The trajectory generation of spray robot based on of off-line programming has become a trend of development of control method of spray robots. On the basis of our analysis and research about existing trajectory generation schemes of 6-axis robots, this essay proposes a scheme that increasing the 7th axis to a 6-axis robot in the design of spray trajectory. The scheme extends the reachable space of the robot by changing movement mode of 6-axis robot, which enables it to accomplish spray on complicated curved surface. Experiments show that the scheme presented in this essay performs better than traditional trajectory generation strategies of 6-axis robot for spray on complex curved surface.
Abstract:At present,it needs extensive human to sort the product and check the information and dispatch the express,to achieve the automation and intelligence of express industry,decrease labor costs,and improve the efficiency of express delivery industry. The paper designs an intelligent system on express supervision. It adopts Network Composing Technology of ZigBee,builds coordinator node and electric label point,and realizes efficient management and automatic sorting and quick look of express. Via reliable communication protocols,it makes delivering data stably,safely,reliably come true. It designs and processes automatic sort device,which combines automation and information technology. Large number of experiments show that the system achieves the anticipating targets that sorting the express automatically and quick look of express in dispatching.It increases the efficiency of express greatly.
Abstract:The software-based method of firefly-inspired synchronicity algorithm may cause a terrible congestion when the network is close to getting synchronicity. Thus, a congestion avoidance mechanism is proposed for firefly-inspired synchronicity algorithm. This mechanism uses simplified phase model and disperses the transmission of synchronicity messages in the whole period stochastically, which can relieve the congestion effectively. At the end, this mechanism is evaluated by simulations and experiments, which shows that it can speed up the process, relieve the congestion effectively and get good performance in a network with high nodal density.